Deep Generative Models

10. Energy-Based Models

• 국가수리과학연구소 산업수학혁신센터 김민중

Recap

- Model Families
 - Autoregressive Models: $p_{\theta}(\mathbf{x}) = \prod_{i=1}^{d} p_{\theta}(x_i | \mathbf{x}_{< i})$
 - Variational Autoencoders: $p_{\theta}(\mathbf{x}) = \int p_{\theta}(\mathbf{x}, \mathbf{z}) d\mathbf{z}$
 - Normalizing Flow Models: $p_X(\mathbf{x}; \theta) = p_Z\left(\mathbf{f}_{\theta}^{-1}(\mathbf{x})\right) \left| \det\left(\frac{\partial f_{\theta}^{-1}(\mathbf{x})}{\partial \mathbf{x}}\right) \right|$
- All the above families are trained by minimizing KL divergence $D(p_{data} \parallel p_{\theta})$ or equivalently maximizing likelihoods (or approximations)

Recap

- Generative Adversarial Networks (GANs) $\min_{\theta} \max_{\phi} E_{x \sim p_{data}} \left[\log D_{\phi}(x) \right] + E_{z \sim p_{Z}} \left[\log \left(1 - D_{\phi} (G_{\theta}(z)) \right) \right]$
 - Two sample tests
 - (approximately) optimize *f*-divergences and the Wasserstein distance
 - Very flexible model architectures
 - But likelihood is intractable, training is unstable, hard to evaluate, and has mode collapse issues

Plan

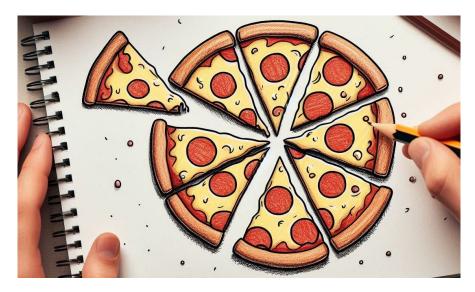
- Energy-based models (EBMs).
 - Very flexible model architectures
 - Stable training
 - Relatively high sample quality
 - Flexible composition

Parameterizing probability distributions

- Probability distributions $p(\mathbf{x})$ are a key building block in generative modeling
 - non-negative: $p(x) \ge 0$
 - **sum-to-one**: $\sum_{x} p(x)$ (or $\int p(x) dx = 1$ for continuous variables)
- Condition of non-negative function $p_{\theta}(x)$ is not difficult
- Given any function $f_{\theta}(\mathbf{x})$, we can choose
 - $g_{\theta}(\boldsymbol{x}) = f_{\theta}(\boldsymbol{x})^2$
 - $g_{\theta}(\mathbf{x}) = \exp f_{\theta}(\mathbf{x})$
 - $g_{\theta}(\mathbf{x}) = |f_{\theta}(\mathbf{x})|$
 - $g_{\theta}(\mathbf{x}) = \log(1 + \exp f_{\theta}(\mathbf{x}))$
 - etc.
 - In general, g_{θ} is not a normalized function of p_{θ}

Parameterizing probability distributions

- Probability distributions $p(\mathbf{x})$ are a key building block in generative modeling
 - non-negative: $p(x) \ge 0$
 - **sum-to-one**: $\sum_{x} p(x)$ (or $\int p(x) dx = 1$ for continuous variables)
- Sum-to-one is key



Parameterizing probability distributions

- Probability distributions $p(\mathbf{x})$ are a key building block in generative modeling
 - non-negative: $p(x) \ge 0$
 - **sum-to-one**: $\sum_{x} p(x)$ (or $\int p(x) dx = 1$ for continuous variables)
- Total "volume" is fixed: increasing p(x_{train}) guarantees that x_{train} becomes relatively more likely
 Problem:
- Problem:
 - $g_{\theta}(x)$ might not sum-to-one
 - $\sum_{x} g_{\theta}(x) =: Z(\theta) \neq 1$ in general, so $g_{\theta}(x)$ is not a valid probability mass function or density

Energy-based model

$$p_{\theta}(\boldsymbol{x}) = \frac{1}{\int \exp(f_{\theta}(\boldsymbol{x})) d\boldsymbol{x}} \exp(f_{\theta}(\boldsymbol{x})) = \frac{1}{Z(\theta)} \exp(f_{\theta}(\boldsymbol{x}))$$

- I.e., $g_{\theta}(\mathbf{x}) = \exp(f_{\theta}(\mathbf{x}))$
- The volume/normalization constant

$$\int \exp(f_{\theta}(\boldsymbol{x})) d\boldsymbol{x}$$

• is also called the partition function

Energy-based model

- Why exponential (and not e.g $f_{\theta}(x)^2$)?
 - Want to capture very large variations in probability. logprobability is the natural scale we want to work with Otherwise need highly non-smooth f_{θ} .
 - Exponential families. Many common distributions can be written in this form
 - These distributions arise under general assumptions in statistical physics (maximum entropy, second law of thermodynamics)
 - $-f_{\theta}$ is called the energy, hence the name
 - Intuitively, configurations ${\bf x}$ with low energy (high $f_{\theta}({\bf x}))$ are more likely

Idea

$$p_{\theta}(\boldsymbol{x}) = \frac{1}{\int \exp(f_{\theta}(\boldsymbol{x})) d\boldsymbol{x}} \exp(f_{\theta}(\boldsymbol{x})) = \frac{1}{Z(\theta)} \exp(f_{\theta}(\boldsymbol{x}))$$

- I.e., $p_{\theta}(\mathbf{x}) \propto \exp(f_{\theta}(\mathbf{x}))$
- Given x, x' evaluating $p_{\theta}(x)$ or $p_{\theta}(x')$ requires $Z(\theta)$
- However, the ratio

$$\frac{\partial_{\theta}(\boldsymbol{x})}{\partial_{\theta}(\boldsymbol{x}')} = \exp(f_{\theta}(\boldsymbol{x}) - f_{\theta}(\boldsymbol{x}'))$$

$$Z(\theta)$$

• does not involve $Z(\theta)$

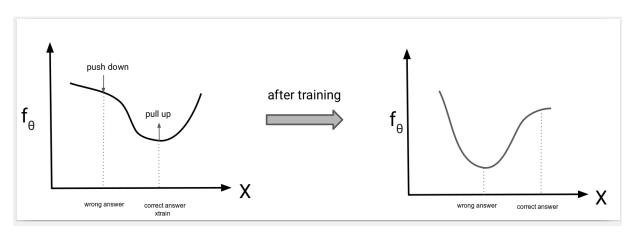
Energy-based model

$$p_{\theta}(\boldsymbol{x}) = \frac{1}{\int \exp(f_{\theta}(\boldsymbol{x})) d\boldsymbol{x}} \exp(f_{\theta}(\boldsymbol{x})) = \frac{1}{Z(\theta)} \exp(f_{\theta}(\boldsymbol{x}))$$

- Pros:
 - Extreme flexibility: can use pretty much any function f_{θ}
- Cons:
 - Sampling from p_{θ} is difficult
 - Evaluating and optimizing likelihood p_{θ} is hard (learning is hard)
 - No feature learning (but can add latent variables)
- Curse of dimensionality: The fundamental issue is that computing $Z(\theta)$ numerically (when no analytic solution is available) scales exponentially in the number of dimensions of x
- Nevertheless, some tasks do not require knowing $Z(\theta)$

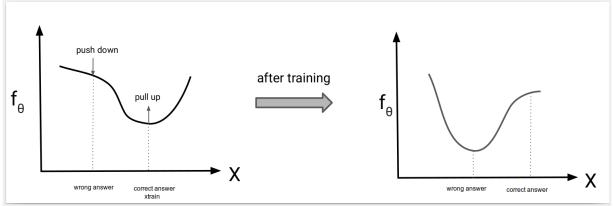
Training intuition

- **Goal**: maximize $\frac{1}{Z(\theta)} \exp(f_{\theta}(\boldsymbol{x}_{train}))$
- Intuition: because the model is not normalized, increasing the un-normalized log-probability $f_{\theta}(x_{train})$ by changing θ does not guarantee that x_{train} becomes relatively more likely (compared to the rest)
- We also need to consider the effect on other "wrong points" and try to "push them down" to also make Z(θ) small



Contrastive Divergence

- Goal: maximize $\frac{1}{Z(\theta)} \exp(f_{\theta}(\boldsymbol{x}_{train}))$
- Instead of evaluating $Z(\theta)$ exactly, use a Monte Carlo estimate
- Contrastive divergence algorithm
 - Sample $x_{sample} \sim p_{\theta}$ and maximize $f_{\theta}(x_{train}) f_{\theta}(x_{sample})$
 - Take step on $\nabla_{\theta} \left(f_{\theta}(\boldsymbol{x}_{train}) f_{\theta}(\boldsymbol{x}_{sample}) \right)$
 - Make training data more likely than typical sample from the model



Contrastive Divergence

- Maximize log-likelihood: $f_{\theta}(\mathbf{x}_{train}) \log Z(\theta)$
- Gradient of log-likelihood:

$$\begin{aligned} \nabla_{\theta} f_{\theta}(\boldsymbol{x}_{train}) - \nabla_{\theta} \log Z(\theta) &= \nabla_{\theta} f_{\theta}(\boldsymbol{x}_{train}) - \frac{\nabla_{\theta} Z(\theta)}{Z(\theta)} \\ &= \nabla_{\theta} f_{\theta}(\boldsymbol{x}_{train}) - \frac{1}{Z(\theta)} \int \nabla_{\theta} \exp(f_{\theta}(\boldsymbol{x})) \, d\boldsymbol{x} \\ &= \nabla_{\theta} f_{\theta}(\boldsymbol{x}_{train}) - \frac{1}{Z(\theta)} \int \exp(f_{\theta}(\boldsymbol{x})) \, \nabla_{\theta} f_{\theta}(\boldsymbol{x}) d\boldsymbol{x} \\ &= \nabla_{\theta} f_{\theta}(\boldsymbol{x}_{train}) - \int \frac{\exp(f_{\theta}(\boldsymbol{x}))}{Z(\theta)} \nabla_{\theta} f_{\theta}(\boldsymbol{x}) d\boldsymbol{x} \\ &= \nabla_{\theta} f_{\theta}(\boldsymbol{x}_{train}) - \int \frac{\exp(f_{\theta}(\boldsymbol{x}))}{Z(\theta)} \nabla_{\theta} f_{\theta}(\boldsymbol{x}) d\boldsymbol{x} \end{aligned}$$

Contrastive Divergence

- Maximize log-likelihood: $\log p_{\theta} (\mathbf{x}_{train}) = f_{\theta}(\mathbf{x}_{train}) \log Z(\theta)$
- Gradient of log-likelihood: $\nabla_{\theta} f_{\theta}(\boldsymbol{x}_{train}) - \nabla_{\theta} \log Z(\theta) = \nabla_{\theta} f_{\theta}(\boldsymbol{x}_{train}) - E_{\boldsymbol{x} \sim p_{\theta}}[\nabla_{\theta} f_{\theta}(\boldsymbol{x})]$ $\approx \nabla_{\theta} f_{\theta}(\boldsymbol{x}_{train}) - \nabla_{\theta} f_{\theta}(\boldsymbol{x}_{sample})$ $\exp(f_{\theta}(\boldsymbol{x}))$
- where $\boldsymbol{x}_{sample} \sim p_{\theta}(\boldsymbol{x}) = \frac{\exp(f_{\theta}(\boldsymbol{x}))}{Z(\theta)}$
- How to sample?

Sampling from Energy-based model

$$p_{\theta}(\boldsymbol{x}) = \frac{1}{\int \exp(f_{\theta}(\boldsymbol{x})) d\boldsymbol{x}} \exp(f_{\theta}(\boldsymbol{x})) = \frac{1}{Z(\theta)} \exp(f_{\theta}(\boldsymbol{x}))$$

- No direct way to sample like in autoregressive or flow models
- Main issue: cannot easily compute how likely each possible sample is
- However, we can easily compare two samples x, x'
- Use an iterative approach called Markov Chain Monte Carlo:
 - Initialize x^0 randomly, t = 0
 - Let $\mathbf{x}' = \mathbf{x}^t + noise$
 - If $f_{\theta}(\mathbf{x}') \ge f_{\theta}(\mathbf{x}^t)$, let $\mathbf{x}^{t+1} = \mathbf{x}'$
 - Else let $x^{t+1} = x'$ with probability $\exp(f_{\theta}(x') f_{\theta}(x^t))$
- Works in theory, but can take a very long time to converge

Sampling from Energy-based model

- For any continuous distribution p_θ(x), suppose we can compute its gradient (the score function) ∇_x log p_θ(x)
- Let $\pi(\mathbf{x})$ be a prior distribution that is easy to sample
- Langevin MCMC
 - Initialize $x^0 \sim \pi(x)$ from prior distribution
 - Repeat $x^{t+1} \sim x^t + \epsilon \nabla_x \log p_\theta(x^t) + \sqrt{2\epsilon z}$ for t = 0, ..., T 1where $z \sim N(0, I)$
 - If $\epsilon \to 0$ and $T \to \infty$, then we have $\mathbf{x}^T \sim p_{\theta}$
- Note that for energy-based models, the score function is tractable

 $\nabla_{\boldsymbol{x}} \log p_{\boldsymbol{\theta}}(\boldsymbol{x}) = \nabla_{\boldsymbol{x}} f_{\boldsymbol{\theta}}(\boldsymbol{x}) - \nabla_{\boldsymbol{x}} \log Z(\boldsymbol{\theta}) = \nabla_{\boldsymbol{x}} f_{\boldsymbol{\theta}}(\boldsymbol{x})$

Training on Energy-based model

- Define the function $f_{\theta}(\mathbf{x})$ parametrized by θ
- Find \mathbf{x}_{sample} that makes $f_{\theta}(\mathbf{x})$ relatively more likely using Langevin MCMC
 - $x^{t+1} \sim x^t + \epsilon \nabla_x f_\theta(x_t) + \sqrt{2\epsilon z}$ for t = 0, ..., T 1 where $z \sim N(0, I)$ where ϵ is the step size
- Update the parameter θ

$$\theta^{t+1} = \theta^t + \eta \nabla_{\theta} \left(f_{\theta}(\boldsymbol{x}_{train}) - f_{\theta}(\boldsymbol{x}_{sample}) \right)$$

Modern Energy-based model

Figure 1: Synthesis by short-run MCMC: Generating synthesized examples by running 100 steps of Langevin dynamics initialized from uniform noise for CelebA (64×64).

Figure 2: Synthesis by short-run MCMC: Generating synthesized examples by running 100 steps of Langevin dynamics initialized from uniform noise for CelebA (128×128).

Source: Nijkamp et al. 2019

Recap. of Energy-based model

- Energy-based models: $\frac{1}{Z(\theta)} \exp(f_{\theta}(\mathbf{x}))$
 - $Z(\theta)$ is intractable, so no access to likelihood
 - Comparing the probability of two points is easy

$$\frac{p_{\theta}(\boldsymbol{x})}{p_{\theta}(\boldsymbol{x}')} = \exp(f_{\theta}(\boldsymbol{x}) - f_{\theta}(\boldsymbol{x}'))$$

Maximum likelihood training:

$$\max_{\theta} [f_{\theta}(\boldsymbol{x}_{train}) - \log Z(\theta)]$$

• Contrastive divergence:

 $\nabla_{\theta} f_{\theta}(\boldsymbol{x}_{train}) - \nabla_{\theta} \log Z(\theta) \approx \nabla_{\theta} f_{\theta}(\boldsymbol{x}_{train}) - \nabla_{\theta} f_{\theta}(\boldsymbol{x}_{sample})$

• where
$$x_{sample} \sim p_{\theta}(x) = \frac{\exp(f_{\theta}(x))}{Z(\theta)}$$

Sampling from Energy-based model

- Trained model f_{θ} is given
- Let $\pi(x)$ be a prior distribution that is easy to sample
- Langevin MCMC
 - Initialize $x^0 \sim \pi(x)$ from prior distribution
 - Repeat $x^{t+1} \sim x^t + \epsilon \nabla_x f_\theta(x^t) + \sqrt{2\epsilon}z$ for t = 0, ..., T 1where $z \sim N(0, I)$

Thanks