Deep Generative Models

10. Energy-Based Models




Recap

e Model Families
« Autoregressive Models: pg(x) = [T%, pg (x;1x<;)
- Variational Autoencoders: py(x) = [ pg(x, z)dz

« Normalizing Flow Models: py(x;0) = p, (fgl(x) ‘d t afgl(x))

e All the above families are trained by minimizing KL divergence
D(paatq || o) OF equivalently maximizing likelihoods (or
approximations)
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Recap

e Generative Adversarial Networks (GANS)

m@in md:;lx Exp,01s [log Dy, (x)] +E;p, [log (1 — D¢(G9 (z)))]

e Two sample tests

 (approximately) optimize f-divergences and the Wasserstein
distance

« Very flexible model architectures

e But likelihood is intractable, training is unstable, hard to
evaluate, and has mode collapse issues
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Plan

e Energy-based models (EBMs).
« Very flexible model architectures
e Stable training
e Relatively high sample quality
e Flexible composition
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Parameterizing probability distributions

 Probability distributions p(x) are a key building block in
generative modeling

« non-negative: p(x) >0
 sum-to-one: Y, p(x) (or [ p(x)dx = 1 for continuous
variables)

 Condition of non-negative function pg(x) is not difficult
 Given any function fy(x), we can choose

* go(x) = fo(x)*

* go(x) = exp fo(x)

* go(x) = |fo(x)]

* go(x) =log(1+ exp fo(x))
. etc.

 In general, gg is not a normalized function of pg
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Parameterizing probability distributions

 Probability distributions p(x) are a key building block in
generative modeling
« non-negative: p(x) >0
 sum-to-one: Y, p(x) (or [ p(x)dx = 1 for continuous
variables)
« Sum-to-one is key
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Parameterizing probability distributions

 Probability distributions p(x) are a key building block in
generative modeling
« non-negative: p(x) >0
 sum-to-one: Y, p(x) (or [ p(x)dx = 1 for continuous
variables)
 Total “"volume” is fixed: increasing p(x;,-4i,) guarantees that
X:rqin DECOMES relatively more likely
e Problem:
* gp(x) might not sum-to-one
* Y. gg(x) =:Z(0) # 1in general, so gg(x) is not a valid
probability mass function or density
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Energy-based model

1
Z(0)

pg(x) = exp(fp(x)) = exp(fp(x))

1
J exp(fg(x))dx

+ le., go(x) = exp(foa(x))
« The volume/normalization constant

f exp (fg (x))dx

e s also called the partition function
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Energy-based model

« Why exponential (and not e.g fy(x)?)?
 Want to capture very large variations in probability. log-
probability is the natural scale we want to work with
Otherwise need highly non-smooth fj.
« Exponential families. Many common distributions can be
written in this form
e These distributions arise under general assumptions in
statistical physics (maximum entropy, second law of
thermodynamics)
* —fp is called the energy, hence the name
« Intuitively, configurations x with low energy (high f(x))
are more likely
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ldea

1
exp(fo(x)) = 7(0) exp(fp (x))

1
Pl = J exp(fo(x))dx

+ le, po(x) o exp(fp(x))
« Given x, x' evaluating pg(x) or pg(x') requires Z(6)

« However, the ratio
po(x)

Po(x')
« does not involve Z(8)

= exp(fo(x) — fo(x"))
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Energy-based model

1
exp(fo (1) = 755 exp(fo ()

1
Pa(x) = [ exp(fo(x))dx

 Pros:
« Extreme flexibility: can use pretty much any function fg
 (Cons:
« Sampling from pg is difficult
 Evaluating and optimizing likelihood pg is hard (learning is
hard)
e No feature learning (but can add latent variables)

e Curse of dimensionality: The fundamental issue is that
computing Z(6) numerically (when no analytic solution is
available) scales exponentially in the number of dimensions of x

« Nevertheless, some tasks do not require knowing Z(0)
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Training intuition

« Goal: maX|m|ze—exp(f9(xtmm))

e Intuition: because the model is not normalized, increasing the
un-normalized log-probability fg(x¢-4in) DY Changing 6 does not
guarantee that x,,.,;,, becomes relatively more likely (compared
to the rest)

« We also need to consider the effect on other “wrong points” and
try to “push them down” to also make Z(8) small

{ }
push down

after training
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Contrastive Divergence

e Goal: maX|m|ze—exp(f9(xtram))

 Instead of evaluatlng Z(0) exactly, use a Monte Carlo estimate
e Contrastive divergence algorithm

« Sample Xsample ™~ P8 and maximize fg(X¢rqin) — fo (xsam'ple)

« Take step on Vg (f@ (Xtrain) — fo (xsample))

« Make training data more likely than typical sample from the
model

push down

after training
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Contrastive Divergence

« Maximize log-likelihood: fy(xtrqin) — log Z(0)
e Gradient of log-likelihood:

Vo fo (Xerain) = Vo108 Z(6) = Vo fg(Xerain) - V;f;? :
= Vo Crirain) — 555 | Vo ex0(fo )

= Voo Grirain) ~ 755 | exP(fo () Vo (R)dx

= Voo Cterain) — | expz({gg"” Vo fox)dx

= Vofo(Xtrain) — Ex~p,[Vofo(x)]
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Contrastive Divergence

Maximize log-likelihood: log pg (Xtrain) = fo Xtrain) — log Z(6)
Gradient of log-likelihood:
Vofo (Xtrain) — Vo log Z(0) = Vo fo(Xtrain) — Ex~p,Vefo(x)]

~ vaG (xtrain) - ngg (xsample)

fo(x)
where xggmpie~po (x) = expz((g)x )

How to sample?
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Sampling from Energy-based model

1
exp(fo(x)) = 7(0) exp(fp(x))

1
Pa(x) = [ exp(fo(x))dx

 No direct way to sample like in autoregressive or flow models
e Main issue: cannot easily compute how likely each possible
sample is
« However, we can easily compare two samples x, x’
e Use an iterative approach called Markov Chain Monte Carlo:
e Initialize Y randomly, t = 0
e Letx’ = xt + noise
+ If fo(x) = fa(xh), let x*+1 = x’
« Else let xt*1 = x' with probability exp(fy(x') — fo(x"))
« Works in theory, but can take a very long time to converge
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Sampling from Energy-based model

« For any continuous distribution pg(x), suppose we can compute

its gradient (the score function) V, log pg(x)
e Let w(x) be a prior distribution that is easy to sample

 Langevin MCMC
e Initialize x’~m(x) from prior distribution
+ Repeat xt*1~xt + €V, logpg(xt) +V2ezfort=0,..,T—1
where z~N (0, )
« Ife > 0and T — oo, then we have xT~pg
 Note that for energy-based models, the score function is
tractable

Vxlogpe (x) = Vifo (x) — Vylog Z(0) = Vxfo (x)
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Training on Energy-based model

« Define the function fy(x) parametrized by 6
 Find xg5mpie that makes fy(x) relatively more likely using
Langevin MCMC
o xttloxt + eV, fo(x,) ++V2ezfort=0,..,T —1 where
z~N(0, 1) where € is the step size
e Update the parameter 0

ottt =0t + NVe (fG (Xtrain) — fo (xsample))
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Modern Energy-based model

Figure 1: Synthesis by short-run MCMC: Generatmg synthesized examples by running 100 steps
of Langevin dynamics initialized from uniform noise for CelebA (64 x 64).

Figure 2: Synthesis by short-run MCMC: Generating synthesized examples by running 100 steps
of Langevin dynamics initialized from uniform noise for CelebA (128 x 128).

Source: Nijkamp et al. 2019
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Recap. of Energy-based model

- Energy-based models: (Q)GXp(fg(X))

« 7Z(0) is intractable, so no access to likelihood
« Comparing the probability of two points is easy

5:((;)) = exp(fop(x) — fo(x"))

« Maximum likelihood training:
meax [f@ (Xtrain) — log Z(H)]
e Contrastive divergence:

VQfG (xtrain) o VQ logZ(H) ~ VQfG (xtrain) _ VHfG (xsample)

fo(x)
 where xsample~pg (X) — eXpZ((g)x )
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Sampling from Energy-based model

 Trained model fy is given
« Let m(x) be a prior distribution that is easy to sample
 Langevin MCMC
e Initialize x°~m(x) from prior distribution
 Repeat x!*1~xt + eV, fo(x*) +V2ezfort =0,..,T -1
where z~N (0, )
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Thanks




