
Deep Generative Models

10. Energy-Based Models

• 국가수리과학연구소 산업수학혁신센터 김민중

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

• Model Families
• Autoregressive Models: 𝑝! 𝒙 = ∏"#$

% 𝑝! 𝑥" 𝒙&𝒊
• Variational Autoencoders: 𝑝! 𝒙 = ∫𝑝! 𝒙, 𝒛 𝑑𝒛

• Normalizing Flow Models: 𝑝! 𝒙; 𝜃 = 𝑝" 𝒇#$% 𝒙 det &𝒇!
"# 𝒙
&𝒙

• All the above families are trained by minimizing KL divergence
𝐷 𝑝%()(∥ 𝑝! or equivalently maximizing likelihoods (or
approximations)

Recap

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

• Generative Adversarial Networks (GANs)

min
!
max
*

𝐸𝒙~-!"#" log𝐷* 𝒙 + 𝐸𝒛~-$ log 1 − 𝐷* 𝐺! 𝒛

• Two sample tests
• (approximately) optimize 𝑓-divergences and the Wasserstein

distance
• Very flexible model architectures
• But likelihood is intractable, training is unstable, hard to

evaluate, and has mode collapse issues

Recap

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

• Energy-based models (EBMs).
• Very flexible model architectures
• Stable training
• Relatively high sample quality
• Flexible composition

Plan

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

• Probability distributions 𝑝 𝒙 are a key building block in
generative modeling
• non-negative: 𝑝 𝒙 ≥ 0
• sum-to-one: ∑𝒙𝑝 𝒙 (or ∫ 𝑝 𝒙 𝑑𝒙 = 1 for continuous

variables)
• Condition of non-negative function 𝑝! 𝒙 is not difficult
• Given any function 𝑓! 𝒙 , we can choose
• 𝑔! 𝒙 = 𝑓! 𝒙 /

• 𝑔! 𝒙 = exp 𝑓! 𝒙
• 𝑔! 𝒙 = 𝑓! 𝒙
• 𝑔! 𝒙 = log 1 + exp 𝑓! 𝒙
• etc.
• In general, 𝑔! is not a normalized function of 𝑝!

Parameterizing probability distributions

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

• Probability distributions 𝑝 𝒙 are a key building block in
generative modeling
• non-negative: 𝑝 𝒙 ≥ 0
• sum-to-one: ∑𝒙𝑝 𝒙 (or ∫ 𝑝 𝒙 𝑑𝒙 = 1 for continuous

variables)
• Sum-to-one is key

Parameterizing probability distributions

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

• Probability distributions 𝑝 𝒙 are a key building block in
generative modeling
• non-negative: 𝑝 𝒙 ≥ 0
• sum-to-one: ∑𝒙𝑝 𝒙 (or ∫ 𝑝 𝒙 𝑑𝒙 = 1 for continuous

variables)
• Total “volume” is fixed: increasing 𝑝 𝒙)0("1 guarantees that
𝒙)0("1 becomes relatively more likely

• Problem:
• 𝑔! 𝒙 might not sum-to-one
• ∑2𝑔! 𝒙 =: 𝑍 𝜃 ≠ 1 in general, so 𝑔! 𝒙 is not a valid

probability mass function or density

Parameterizing probability distributions

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

𝑝! 𝒙 =
1

∫ exp 𝑓! 𝒙 𝑑𝒙
exp 𝑓! 𝒙 =

1
𝑍 𝜃 exp 𝑓! 𝒙

• I.e., 𝑔! 𝒙 = exp 𝑓! 𝒙
• The volume/normalization constant

Dexp 𝑓! 𝒙 𝑑𝒙

• is also called the partition function

Energy-based model

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

• Why exponential (and not e.g 𝑓! 𝒙 /)?
• Want to capture very large variations in probability. log-

probability is the natural scale we want to work with
Otherwise need highly non-smooth 𝑓!.

• Exponential families. Many common distributions can be
written in this form

• These distributions arise under general assumptions in
statistical physics (maximum entropy, second law of
thermodynamics)
• −𝑓! is called the energy, hence the name
• Intuitively, configurations 𝒙 with low energy (high 𝑓! 𝒙)

are more likely

Energy-based model

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

𝑝! 𝒙 =
1

∫ exp 𝑓! 𝒙 𝑑𝒙
exp 𝑓! 𝒙 =

1
𝑍 𝜃 exp 𝑓! 𝒙

• I.e., 𝑝! 𝒙 ∝ exp 𝑓! 𝒙
• Given 𝒙, 𝒙′ evaluating 𝑝! 𝒙 or 𝑝! 𝒙′ requires 𝑍 𝜃
• However, the ratio

𝑝! 𝒙
𝑝! 𝒙′

= exp 𝑓! 𝒙 − 𝑓! 𝒙′

• does not involve 𝑍 𝜃

Idea

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

𝑝! 𝒙 =
1

∫ exp 𝑓! 𝒙 𝑑𝒙
exp 𝑓! 𝒙 =

1
𝑍 𝜃 exp 𝑓! 𝒙

• Pros:
• Extreme flexibility: can use pretty much any function 𝑓!

• Cons:
• Sampling from 𝑝! is difficult
• Evaluating and optimizing likelihood 𝑝! is hard (learning is

hard)
• No feature learning (but can add latent variables)

• Curse of dimensionality: The fundamental issue is that
computing 𝑍 𝜃 numerically (when no analytic solution is
available) scales exponentially in the number of dimensions of 𝒙

• Nevertheless, some tasks do not require knowing 𝑍 𝜃

Energy-based model

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

• Goal: maximize $
3 ! exp 𝑓! 𝒙)0("1

• Intuition: because the model is not normalized, increasing the
un-normalized log-probability 𝑓! 𝒙)0("1 by changing 𝜃 does not
guarantee that 𝒙)0("1 becomes relatively more likely (compared
to the rest)

• We also need to consider the effect on other “wrong points” and
try to “push them down” to also make 𝑍 𝜃 small

Training intuition

Training intuition

Goal: maximize exp{f✓(xtrain)}
Z(✓) . Increase numerator, decrease denominator.

Intuition: because the model is not normalized, increasing the
un-normalized log-probability f✓(xtrain) by changing ✓ does not guarantee
that xtrain becomes relatively more likely (compared to the rest).

We also need to take into account the e↵ect on other “wrong points” and
try to “push them down” to also make Z (✓) small.

Stefano Ermon (AI Lab) Deep Generative Models Lecture 11 21 / 1

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

• Goal: maximize $
3 ! exp 𝑓! 𝒙)0("1

• Instead of evaluating 𝑍 𝜃 exactly, use a Monte Carlo estimate
• Contrastive divergence algorithm
• Sample 𝒙4(5-67~𝑝! and maximize 𝑓! 𝒙)0("1 − 𝑓! 𝒙4(5-67
• Take step on ∇! 𝑓! 𝒙)0("1 − 𝑓! 𝒙4(5-67
• Make training data more likely than typical sample from the

model

Contrastive Divergence

Training intuition

Goal: maximize exp{f✓(xtrain)}
Z(✓) . Increase numerator, decrease denominator.

Intuition: because the model is not normalized, increasing the
un-normalized log-probability f✓(xtrain) by changing ✓ does not guarantee
that xtrain becomes relatively more likely (compared to the rest).

We also need to take into account the e↵ect on other “wrong points” and
try to “push them down” to also make Z (✓) small.

Stefano Ermon (AI Lab) Deep Generative Models Lecture 11 21 / 1

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

• Maximize log-likelihood: 𝑓! 𝒙)0("1 − log 𝑍 𝜃
• Gradient of log-likelihood:

∇!𝑓! 𝒙)0("1 − ∇! log 𝑍 𝜃 = ∇!𝑓! 𝒙)0("1 −
∇!𝑍 𝜃
𝑍 𝜃

= ∇!𝑓! 𝒙)0("1 −
1

𝑍 𝜃
D∇! exp 𝑓! 𝒙 𝑑𝒙

= ∇!𝑓! 𝒙)0("1 −
1

𝑍 𝜃
Dexp 𝑓! 𝒙 ∇!𝑓! 𝒙 𝑑𝒙

= ∇!𝑓! 𝒙)0("1 −D
exp 𝑓! 𝒙

𝑍 𝜃
∇!𝑓! 𝒙 𝑑𝒙

= ∇!𝑓! 𝒙)0("1 − 𝐸𝒙~-% ∇!𝑓! 𝒙

Contrastive Divergence

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

• Maximize log-likelihood: log 𝑝! 𝒙)0("1 = 𝑓! 𝒙)0("1 − log 𝑍 𝜃
• Gradient of log-likelihood:

∇!𝑓! 𝒙)0("1 − ∇! log 𝑍 𝜃 = ∇!𝑓! 𝒙)0("1 − 𝐸𝒙~-% ∇!𝑓! 𝒙
≈ ∇!𝑓! 𝒙)0("1 − ∇!𝑓! 𝒙4(5-67

• where 𝒙4(5-67~𝑝! 𝒙 = 89: ;% 𝒙
3 !

• How to sample?

Contrastive Divergence

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

𝑝! 𝒙 =
1

∫ exp 𝑓! 𝒙 𝑑𝒙
exp 𝑓! 𝒙 =

1
𝑍 𝜃 exp 𝑓! 𝒙

• No direct way to sample like in autoregressive or flow models
• Main issue: cannot easily compute how likely each possible

sample is
• However, we can easily compare two samples 𝒙, 𝒙′
• Use an iterative approach called Markov Chain Monte Carlo:
• Initialize 𝒙𝟎 randomly, 𝑡 = 0
• Let 𝒙= = 𝒙) + 𝑛𝑜𝑖𝑠𝑒

• If 𝑓! 𝒙= ≥ 𝑓!(𝒙)), let 𝒙)>$ = 𝒙′
• Else let 𝒙)>$ = 𝒙′ with probability exp 𝑓! 𝒙= − 𝑓! 𝒙)

• Works in theory, but can take a very long time to converge

Sampling from Energy-based model

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

• For any continuous distribution 𝑝! 𝒙 , suppose we can compute
its gradient (the score function) ∇𝒙 log 𝑝! 𝒙

• Let 𝜋 𝒙 be a prior distribution that is easy to sample
• Langevin MCMC
• Initialize 𝒙?~𝜋 𝒙 from prior distribution
• Repeat 𝒙)>$~𝒙) + 𝜖∇𝒙 log 𝑝! 𝒙) + 2𝜖𝒛 for 𝑡 = 0,… , 𝑇 − 1

where 𝒛~𝑁 0, 𝐼
• If 𝜖 → 0 and 𝑇 → ∞, then we have 𝒙@~𝑝!

• Note that for energy-based models, the score function is
tractable

∇𝒙 log 𝑝! 𝒙 = ∇𝒙𝑓! 𝒙 − ∇𝒙 log 𝑍 𝜃 = ∇𝒙𝑓! 𝒙

Sampling from Energy-based model

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

• Define the function 𝑓! 𝒙 parametrized by 𝜃
• Find 𝒙4(5-67 that makes 𝑓! 𝒙 relatively more likely using

Langevin MCMC
• 𝒙)>$~𝒙) + 𝜖∇𝒙𝑓! 𝒙) + 2𝜖𝒛 for 𝑡 = 0,… , 𝑇 − 1 where
𝒛~𝑁 0, 𝐼 where 𝜖 is the step size

• Update the parameter 𝜃
𝜃)>$ = 𝜃) + 𝜂∇! 𝑓! 𝒙)0("1 − 𝑓! 𝒙4(5-67

Training on Energy-based model

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Modern Energy-based model

Source: Nijkamp et al. 2019

Figure 1: Synthesis by short-run MCMC: Generating synthesized examples by running 100 steps
of Langevin dynamics initialized from uniform noise for CelebA (64⇥64).

Figure 2: Synthesis by short-run MCMC: Generating synthesized examples by running 100 steps
of Langevin dynamics initialized from uniform noise for CelebA (128⇥128).

1.2 Short-Run MCMC as Generator or Flow Model

In this paper, we investigate a learning scheme that is apparently wrong with no hope of learning a
valid model. Within each learning iteration, we run a non-convergent, non-mixing and non-persistent
short-run MCMC, such as 5 to 100 steps of Langevin dynamics, toward the current EBM. Here,
we always initialize the non-persistent short-run MCMC from the same distribution, such as the
uniform noise distribution, and we always run the same number of MCMC steps. We then update
the model parameters as usual, as if the synthesized examples generated by the non-convergent and
non-persistent noise-initialized short-run MCMC are the fair samples generated from the current
EBM. We show that, after the convergence of such a learning algorithm, the resulting noise-initialized
short-run MCMC can generate realistic images, see Figures 1 and 2.

The short-run MCMC is not a valid sampler of the EBM because it is short-run. As a result, the
learned EBM cannot be a valid model because it is learned based on a wrong sampler. Thus we learn
a wrong sampler of a wrong model. However, the short-run MCMC can indeed generate realistic
images. What is going on?

The goal of this paper is to understand the learned short-run MCMC. We provide arguments that it is
a valid model for the data in terms of matching the statistical properties of the data distribution. We
also show that the learned short-run MCMC can be used as a generative model, such as a generator
model [13, 25] or the flow model [8, 9, 24, 4, 14], with the Langevin dynamics serving as a noise-
injected residual network, with the initial image serving as the latent variables, and with the initial
uniform noise distribution serving as the prior distribution of the latent variables. We show that
unlike traditional EBM and MCMC, the learned short-run MCMC is capable of reconstructing the
observed images and interpolating different images, just like a generator or a flow model can do. See
Figures 3 and 4. This is very unconventional for EBM or MCMC, and this is due to the fact that
the MCMC is non-convergent, non-mixing and non-persistent. In fact, our argument applies to the
situation where the short-run MCMC does not need to have the EBM as the stationary distribution.

While the learned short-run MCMC can be used for synthesis, the above learning scheme can be
generalized to tasks such as image inpainting, super-resolution, style transfer, or inverse optimal
control [53, 1] etc., using informative initial distributions and conditional energy functions.

2 Contributions and Related Work

This paper constitutes a conceptual shift, where we shift attention from learning EBM with unrealistic
convergent MCMC to the non-convergent short-run MCMC. This is a break away from the long
tradition of both EBM and MCMC. We provide theoretical and empirical evidence that the learned
short-run MCMC is a valid generator or flow model. This conceptual shift frees us from the
convergence issue of MCMC, and makes the short-run MCMC a reliable and efficient technology.

More generally, we shift the focus from energy-based model to energy-based dynamics. This appears
to be consistent with the common practice of computational neuroscience [27], where researchers
often directly start from the dynamics, such as attractor dynamics [20, 2, 37] whose express goal is to

2

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

• Energy-based models:
$

3 ! exp 𝑓! 𝒙
• 𝑍 𝜃 is intractable, so no access to likelihood
• Comparing the probability of two points is easy

𝑝! 𝒙
𝑝! 𝒙′

= exp 𝑓! 𝒙 − 𝑓! 𝒙′

• Maximum likelihood training:
max
!

𝑓! 𝒙)0("1 − log 𝑍(𝜃)
• Contrastive divergence:
∇!𝑓! 𝒙)0("1 − ∇! log 𝑍 𝜃 ≈ ∇!𝑓! 𝒙)0("1 − ∇!𝑓! 𝒙4(5-67
• where 𝒙4(5-67~𝑝!(𝒙) =

89: ;% 𝒙
3 !

Recap. of Energy-based model

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

• Trained model 𝑓! is given
• Let 𝜋 𝒙 be a prior distribution that is easy to sample
• Langevin MCMC
• Initialize 𝒙?~𝜋 𝒙 from prior distribution
• Repeat 𝒙)>$~𝒙) + 𝜖∇𝒙𝑓! 𝒙𝒕 + 2𝜖𝒛 for 𝑡 = 0,… , 𝑇 − 1

where 𝒛~𝑁 0, 𝐼

Sampling from Energy-based model

Thanks

